
GraphQL Documentation

Xledger has recently added a GraphQL API, which opens a lot of integration possibilities. If you are
unfamiliar with the concepts in GraphQL, we suggest checking out the tutorials here. In this document,
we'll assume you are familiar with the basics, and cover:

● How to explore the Xledger Schema
● How to connect to the API programmatically
● Querying: Filtering, sorting, pagination
● A few Xledger specific concepts

Note: This document will assume you are trying to connect to www.xledger.net. If you are connecting to
a test environment (for example, test.xledger.net), replace the hostname of the URLs in this document
accordingly.

http://graphql.org/
http://graphql.org/learn/
http://www.xledger.net

Table of Contents
Exploring the Schema 2

Connecting to the API Programmatically 3

Querying: Sorting and Filtering 5

Querying: OwnerSet and Object Status 7

Querying: Pagination 8

Querying: History 8

Rate Limiting 9

Conserving Credits 10

Burst Traffic Limit 11

Example Application 11

Mutations 11

File Attachments 12

Updating multiple records in one request 13

Subscriptions (beta) 14

Getting started with subscriptions 14

Special messages 15

Subscriptions and API Credits 15

Surviving disconnects 16

Example subscription program 17

Recent Changes 18

2021 R2 - Nov 20th 2021 (planned) 18

2021 R1 - June 12th 2021 18

New bulk mutation support 18

Improved error messages for reference input arguments 18

Alternative input methods for reference input arguments 20

Xledger GraphQL Documentation Page 1 of 21

Exploring the Schema

To be able to start exploring the schema, you need to have access to the "Administrator", “Domain
Administrator”, or “Implementation Manager” roles in Xledger. After you have logged in and switched to
that role, navigate to www.xledger.net/GraphQL to begin. You should then see something like this:

Note: If you have not logged in with the right credentials, you'll get an error saying you do not have
access to GraphQL.

Try typing in a query like this, and then hit the Play button:

You should see a JSON response of employees to the right.

To view the schema, click on the "Docs" button in the top right:

Xledger GraphQL Documentation Page 2 of 21

http://www.xledger.net/GraphQL

If you then click on query, you'll see a list of the top-level fields that are available:

Connecting to the API Programmatically

Xledger GraphQL Documentation Page 3 of 21

To connect to the API programmatically, first go to this screen to create an API token:

https://www.xledger.net/f/api-tokens

You will be able to create a token, give it a name, and select what type of information it has access to.
Once you have a token, you can make a request like this:

Uri https://www.xledger.net/graphql
HTTP Method POST
Header: Authorization token <your-token-here>

Body { "query": "<your-query-string>",
"variables": <variables object or null>,
"operationName": <operation name or
null>}

JSON

Example using cURL:

curl -H "Authorization: token <your-token-here>"
https://master.xlabs.com/graphql --data-binary '{"query": "{
employees(last: 10) { edges { node { dbId description } } }
}","variables":null,"operationName":null}'

Xledger GraphQL Documentation Page 4 of 21

https://www.xledger.net/f/api-tokens

Here is a basic example that shows how to connect to the API, and loop through a list of employees in C#
(open in LINQPad).

Querying: Sorting and Filtering

GraphQL queries in Xledger come in two forms: one for fetching a single record, and one for fetching
multiple. For example, the type "Employee" has both top level fields, "employee(…)" for fetching 1 by id,
and "employees(…)" to fetch many.

Fetching one by Id Fetch many

When fetching many, for some types you can specify the order to get them back in. For example, if you
wanted to fetch the 10 employees with the earliest start date, you would issue this query:

If you click on the "EMPLOYMENT_FROM" field, you can see a list of other fields you can sort on:

Xledger GraphQL Documentation Page 5 of 21

http://share.linqpad.net/md4e24.linq
https://www.linqpad.net/

To filter the results, you can specify the "filter" argument. For example, to only return results modified
since January 1, 2017, issue this query:

Filters can be combined with other filters by using "AND" or "OR" and then specifying a list of conditions.
For example, this query will get rows that either have been modified since January 1, 2017, or where the
dateTo is less than December 31, 2017:

Xledger GraphQL Documentation Page 6 of 21

Querying: OwnerSet and Object Status

Many concepts in Xledger are defined in a hierarchical fashion, so that a company can see rows defined
above or below them in the owner hierarchy. For types where this makes sense, we add an argument for
"ownerSet". For example, is a query for products that only looks at the current level (instead of UPPER,
which is the default in this case):

Similarly, many concepts in Xledger have the notion of an "object status", where objects can be closed or
opened at will. For types where this applies, we add an "objectStatus" field which can be either OPEN
(the default), CLOSED, or ALL.

Xledger GraphQL Documentation Page 7 of 21

Querying: Pagination

For pagination, Xledger supports the Relay pagination specification. To give this a try, modify the earlier
employee query, adding these parts:

When you hit play, you will then get a field indicating whether there is a next page of results, as well as a
cursor. If there is a next page, and you want to get the next one, specify the "after" field, and use one of
the cursors (for example, the last one) to get the first N records after that one. For example:

If you want to go backwards instead, you can the "last" and "before" fields instead of "first" and "after".

Querying: History

Xledger GraphQL Documentation Page 8 of 21

https://facebook.github.io/relay/graphql/connections.htm

Some resources in Xledger are audit friendly, in that changes made to them get logged. For these, you
can access the changes by using the _changes meta field:

The results will be sorted chronologically, and will have a non-null value for the fields you fetch (e.g.,
description) if that field was inserted or updated. If it did not change in an update, it will be null.
The changeType special field will always have a value.

Alternatively, if you want to see all changes to a resource, not starting from an individual instance, you
can use the appropriate connection field, e.g., subledger_changes.

Rate Limiting

Requests against the GraphQL API are rate limited, so that each company can only make so many
requests each hour. Each query or mutation has a cost, which depends on the number of records and
fields requested. To see how much a query costs, and how many credits your company has remaining,
query for the special field rateLimit:

Xledger GraphQL Documentation Page 9 of 21

Mutations also have a cost, but unfortunately, you cannot query this field in a mutation, since one
request cannot mix queries and mutations in GraphQL.

Conserving Credits
To conserve credits, be tactical with the kind of queries you make.

If you need to sync data, instead of querying for and updating every record, consider asking for only the
records that have been modified in the last N (hours/days).

When asking for data in related registers, make sure you are not repeating information.
For example, instead of writing queries like Figure 1, write a query that just fetches the
projects and the dbId of the projectGroups, and then fetch the projectGroups in the
next query.

In some cases, you can also start from “header” rows, and then get the details for each
(like SalesOrder and SalesOrderDetail), which would achieve the same result.

When asking for a lot of data, (e.g., downloading all your transactions), make sure you
are using the biggest page size you can (10 000). The query cost does not scale linearly
with the number of rows, so this will be much more efficient credits-wise.

When in doubt, keep asking for the rateLimit field, and pay attention to the “cost” in the response as you
make changes to the query.

Xledger GraphQL Documentation Page 10 of 21

Burst Traffic Limit
In addition to the credit limit, there is one other limit to be aware of. In order to keep Xledger responsive
for everyone, there is a limit to how many requests we accept in a short time window (5 seconds). Too
much burst traffic will result in an error, and you should wait a few seconds before sending more
requests.

Example Application
Here is an example application that randomly generates and inserts contacts, all while respecting the
credit and burst limit, and firing requests as quickly as possible:

http://share.linqpad.net/cbcexe.linq

Note how this program doesn’t hardcode all the delays - it just keeps making requests until it gets told to
wait, and then it adds a delay before continuing. As you can see, this is simple to do by just reacting to
the error messages. The benefit of this approach is that it will keep acting optimally if the GraphQL rate
limits are relaxed(*).

* They are relaxed for credits at night time CET - see ‘slackPeriods’ in the schema documentation.

Mutations

Mutations in Xledger are fairly self-explanatory, but here are a couple of examples.

Adding a new supplier:

Xledger GraphQL Documentation Page 11 of 21

http://share.linqpad.net/cbcexe.linq

Updating a supplier by Id:

File Attachments

For some mutations, you may want to attach a file with the request. Examples of this would be
InvoiceBase and ExpenseBase. To do this:

1. Instead of sending a pure JSON request, change to sending a Multipart request.
2. Add one or more file content parts
3. Add a final part (with Content-Type: “application/json”). This part can refer to

filenames you provided in step 2.

Here is an example in C#: (LINQPad link)

If you have done everything correctly, the raw request will look something like this:

Xledger GraphQL Documentation Page 12 of 21

http://share.linqpad.net/m8r47p.linq

Figur 1 - The beginning of the request

Figur 2 - The end of the request

Updating multiple records in one request

To create or update multiple records in one request, use the bulk mutation fields (e.g., addProjects,
updateProjects) and send multiple inputs. For example:

You can use what you pass for clientId to correlate the results in the response.

Xledger GraphQL Documentation Page 13 of 21

Subscriptions (beta)

Subscriptions is a feature of GraphQL that allows you to get notifications in real time in response to
events (such as records being inserted, updated or deleted). The GraphQL specification does not specify
which transport mechanism one should use for subscriptions, but we decided on starting with
websockets, since that is the easiest to implement robustly - we think both for us, and for our customers.

Getting started with subscriptions
Here are the steps you need to take to start using subscriptions:

1. Send a WebSocket handshake request (GET /graphql) to the endpoint you want to connect to
(for example: www.xledger.net)

2. Send a “connection_init” JSON text message, like this:

{
"type":"connection_init",
"payload":{

"headers":{
"Accept":"application/json",
"Content-Type":"application/json",
"Authorization": "token {apiToken}"

}
}

}

3. After connecting, you have 30 seconds to start a subscription before your inactive connection
will be closed by the server. To start a subscription, send a message in the following form:

{
"type":"start",
"id":1,
"payload":{

"query":"subscription { projectsMutated { edges { node {
description } } } }",

"variables":null
}

}

The query above should of course be the subscription query that you want to get notifications for. The id
above is unique in the context of a connection, and allows a client to start many concurrent subscriptions
on a single socket, and then identify which subscription they get a message for, as well as stopping it at
any time. After starting a subscription like the above, you will get messages like this when the relevant
events occur:

{
"type":"data",
"id":1,
"payload":{

"data":{

Xledger GraphQL Documentation Page 14 of 21

http://www.xledger.net

"projectsMutated":{
"edges":[

{"node":{"description":"Acme Company"}}
]

}
}

}
}

4. If you want to stop a subscription, you can send a message like this with the id of the
subscription you want to stop:

{
"type":"stop",
"id":1

}

Note: If your websocket connection is closed, all subscriptions are stopped automatically.

Special messages
If an error occurs, you will get a message in this form:

{
"type":"error",
"payload":{

"errors":[
{

"message":"Something went awry."
}

]
}

}

Another message you may get is a ‘keep-alive’ message, which we may send periodically to prevent the
websocket connection from closing. It will look like this:

{ “type”: “ka” }

You may safely ignore it.

Subscriptions and API Credits
API Credits are charged with subscriptions in three different ways:

1. A client is charged when a web socket is opened (5 credits).

Xledger GraphQL Documentation Page 15 of 21

2. A client is charged for each minute a subscription is active (0.5 credits).

3. A client is charged by the complexity of the query when returning data for a subscription (as though
the subscription were a regular query).

If the server's attempt to charge a client one of those credit costs would take that client beyond their
hourly limit, the server will report an error and close the connection.

Surviving disconnects
To make you get all messages, and can process all notifications in case you get disconnected, ask for the
syncVersion field:

If you keep track of the latest
syncVersion you have seen, you can
provide it when starting the
subscription (via the
“lastSyncVersion” argument), and we
will send you all the notifications that
have happened since then. You have
up to 3 days to reconnect and get
caught up. After that, the notifications
will not be available anymore.

Xledger GraphQL Documentation Page 16 of 21

Example subscription program

Here is a link to an example program that listens for changes in subledgers and prints the messages to
the console. It is runnable with Linqpad version 5.

http://share.linqpad.net/n84q4b.linq

Try running this program, then making changes to suppliers via the UI. You will see notifications in the
console about the changes.

Xledger GraphQL Documentation Page 17 of 21

https://www.linqpad.net/Download.aspx
http://share.linqpad.net/n84q4b.linq

Recent Changes
Note: This section only covers general changes, not changes to specific fields or mutations.

2021 R2 - Nov 20th 2021 (planned)

This release, we added a way to redirect which owner to charge for query credits. You can redirect
credits that would otherwise be charged to the owner of the API key you are querying with by adding a
header called X-XL-Owner-To-Charge, with the value being the dbId of the owner that should be
charged instead.

2021 R1 - June 12th 2021

New bulk mutation support

This release, we added fields such as "addProjects", which allows you to insert many records at once.
The limit on the number is usually 500, but is lower (5) for some fields such as "addUsers".

These new bulk mutation fields are more efficient, run in a transaction (i.e., all of the updates succeed,
or none), cost you less credits per item, and should be easier to use.

Improved error messages for reference input arguments

When using our mutation fields and you provided an invalid value, up until this release, we could only
provide error messages such as "The value 456 is not valid or allowed" for a reference input argument
like "projectDbId". With this release, we either provide an explanation for the failure, or give a few
examples of values that are valid.

Xledger GraphQL Documentation Page 18 of 21

Xledger GraphQL Documentation Page 19 of 21

Alternative input methods for reference input arguments

You can now refer to other types of objects (e.g., Project, Employee) when doing a mutation without
necessarily using our dbIds. For example, if you have a code, and that is enough to uniquely identify an
object, you can use that:

Old way

New way

Xledger GraphQL Documentation Page 20 of 21

